Semi-hyperbolicity and Hyperbolicity

نویسندگان

  • Marcin Mazur
  • Jacek Tabor
  • Piotr Kościelniak
چکیده

We prove that for C1-diffeomorfisms semi-hyperbolicity of an invariant set implies its hyperbolicity. Moreover, we provide some exact estimations of hyperbolicity constants by semi-hyperbolicity ones, which can be useful in strict numerical computations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hyperbolicity of the family $f_c(x)=c(x-frac{x^3}{3})$

The aim of this paper is to present a proof of the hyperbolicity of the family $f_c(x)=c(x-frac{x^3}{3}), |c|>3$, on an its invariant subset of $mathbb{R}$.

متن کامل

On the Hyperbolicity of the Feigenbaum Fixed Point

We show the hyperbolicity of the Feigenbaum fixed point using the inflexibility of the Feigenbaum tower, the Manẽ-Sad-Sullivan λLemma and the existence of parabolic domains (petals) for semi-attractive fixed points.

متن کامل

Semi-hyperbolicity and bi-shadowing in nonautonomous difference equations with Lipschitz mappings

It is shown how known results for autonomous difference equations can be adapted to definitions of semi-hyperbolicity and bi-shadowing generalized to nonautonomous difference equations with Lipschitz continuous mappings. In particular, invertibility and smoothness of the mappings are not required and, for greater applicability, the mappings are allowed to act between possibly different Banach s...

متن کامل

Polynomial Diffeomorphisms of C 2 . Viii: Quasi-expansion

This paper continues our investigation of the dynamics of polynomial diffeomorphisms of C 2 carried out in [BS1-7]. There are several reasons why the polynomial diffeomorphisms of C 2 form an interesting family of dynamical systems. Not the least of these is the fact that there are connections with two other areas of dynamics: polynomial maps of C and diffeo-morphisms of R 2 , which have each r...

متن کامل

Smooth hyperbolicity cones are spectrahedral shadows

Hyperbolicity cones are convex algebraic cones arising from hyperbolic polynomials. A well-understood subclass of hyperbolicity cones is that of spectrahedral cones and it is conjectured that every hyperbolicity cone is spectrahedral. In this paper we prove a weaker version of this conjecture by showing that every smooth hyperbolicity cone is the linear projection of a spectrahedral cone, that ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007